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Abstract

Cu doped SnO, (SnO,:Cu) nano phosphor (NP) was successfully synthesized by one-step simple
hydrothermal method and it was characterized by XRD (x-ray Diffraction) for structural, FESEM
(Field Emission Scanning Electron Microscopy) for morphological and EDS (Electron Dispersive
Spectroscopy) for elemental analysis. NP was annealed at 700 °C for 2 h and its crystallinity for
tetragonal phase was confirmed through XRD. The crystallite size was ~10.39 nm for un-annealed and
~18.16 nm for annealed samples which has been calculated using Scherer equation. The particle size
was estimated to be ~43 nm and the elemental composition of Sn, O, Cu was obtained by EDS. In
addition, to study the dosimetric properties, the SnO,:Cu phosphors were irradiated with 6 MeV
electron beam at fluences ranging from 10 x 10" ecm >t020 x 10'*e cm™*which is equivalent to
the 1.55 kGy to 31 kGy. The irradiated sample showed Thermoluminescence (TL) dosimetric glow
peaksat 170 °C, 263 °Cand 303 °C. SnO,:Cu NP was found to be sensitive enough for energetic
electrons. Further, it has been noticed that the TL dose response found sensitive upto 10 x 10'2
ecm 2(15.50 kGy) with fading of 5.1% for 2 months. Hence, SnO,:Cu can be used for the
measurement of electron doses.

1. Introduction

Numerous applications have been provided by metal-oxide semiconductor because of their suitable band gap
which varies between 2.6 to 4.2 eV [ 1, 2]. Among several metal-oxides, SnO, has unique physiochemical
properties 3, 4]. Itis a n-type semiconductor materials provides great importance in broad range of
applications, viz. gas and UV sensing [5-7], anode of lithium-ion battery [8—10], waste water purification [11],
solar cell, and photo catalyst [ 12—14] etc. On the other hand, in the field of luminescence, efforts are being made
to develop phosphors to change their optical and electronic properties by reducing the dimension of materials
particle [15, 16].

Different doping of SnO, (nanosized phosphor) shows numerous applications like orange-red-emission for
white light LEDs [17], energy transfer mechanism [18], thermoluminescence dosimetric (TLD) areas [19-21]
etc. Some of the cases pure SnO, (without doping) also shows excellent characteristics of luminescent devices
[22]. To prepare SnO, compounds, there are various routs adopted for different morphologies which can be
used for various applications [5, 8, 23—25]. To mentioned few, Bajpayi et al [26] and Bhadane et al[15] have
studied TLD properties through v-irradiation on SnO,:Eu nanoparticles. Zeferino et al[21] proposed a dose
enhancing properties using B-irradiation for the radiotherapy applications. Dosimetry (D) is tool to measured
the absorbed ionizing radiation and Thermoluminescence (TL) is the system to emits the light during heating
the previously irradiated material i.e. insulator or semiconductor, with uniform heating temperature [27-29].
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Further, Jiao et al [30] has studied electron beam irradiation effect on SnO, particles for the gas sensor
application which they synthesized by spray pyrolysis route. But, no study has been done so far in the dosimetric
field using high energy electron beam for SnO, nanophosphors, even though it has suitable dosimetric
properties. Therefore, the aim of the current study is to prepare and investigate the Cu doped SnO, NPs for the
electron dosimetry applications. The TL dosimetric properties of SnO,:Cu have been studied by 6 MeV electrons
(Race Track Microtron Accelerator). This study reveals some important features about the dosimetric properties
of SnO,:Cu nanophosphors (NP’s).

2. Experimental procedure

2.1. Synthesis of SnO,:Cu NPs

Copper doped Tin Oxide NPs were prepared by simple hydrothermal method [19]. All precursor was purchased
as AR grade solution and used it for system of SnO,:Cu NPs. At first the precursor, 20 ml solution of tin chloride
(SnCl,.5H,0) and 60 ml solution of ammonium hydroxide (NaOH) was prepared in double distilled water
(DDW) under continuous stirring condition. Magnetic stirring was performed for 30 min for both the aqueous
solution. The NaOH solution was taken into burette and added to the SnCl,.5H,O solution drop by drop until
the pH of the resulting solution reach to 7. Subsequently, we added a 1 mol% CuCl, precursor (as Cu dopant
which actas an activator) into the above resulting solutions under continues stirring and then added 50 ml
ethanol (absolute, 99.99) in the mixture of SnCl, and NaOH respectively. The homogeneous mixture solution
was then transferred to Teflon lined stainless steel autoclave having the capacity of 100 ml, and put into the oven
at 180 °C for 24 h. After the hydrothermal reaction was complete, white precipitate (ppt) was collected. The ppt
was filter out, wash with DDW and ethanol to remove the unreacted compounds from the wet ppt. At the end,
the wet ppt was dried at 140 °C for 5 h under ambient condition. The obtained dried powder was denoted as
SnO,:Cu. The final powder (i.e. SnO,:Cu phosphor) was used for further characterizations and TL studies. Two
sets of samples prepared for characterization in which one set of samples was annealed at 700 °C and another set
was kept un- annealed.

2.2. Characterization

The structural analysis was obtained using the x-ray Diffraction spectrometer (Bruker-AXS D8 ADVANCE) and
morphological nature with elemental analysis was studied by Field Emission Scanning Electron Microscope &
Energy Dispersive x-ray Spectrometer (FESEM: FEI Nova Nano SEM 450 & EDS:Bruker X-Flash 6130) operated
at 15kV. The dosimetric properties of 6 MeV electron irradiated SnO,:Cu phosphor was recorded using
Nucleonix TLD reader having a heating rate (3) = 5 °Cs ™. The schematic of electron radiation source (6 MeV
race track microtron) is shown in supplementary data file (figure S1 is available online at stacks.iop.org/MRX/
6/055901/mmedia) [31]. The phosphors were irradiated in the air by keeping them on a Faraday cup ata
distance of 12 cm from the extraction port of the microtron and the fluence was recorded in terms of counts,
where, 1 count is nearly equal to 10" electron. The dose conversion of electron fluence (e~ /cm?) to Gray (Gy)
information was indicates in supplementary data file (table S1).

3. Results and discussion

3.1. XRD analysis

Figure 1 depicts the XRD spectra of the pristine and annealed Cu-doped SnO, nanoparticles. The typical XRD
pattern of the SnO,:Cu NPs annealed at 700 °C exhibit all standards hkl peaksi.e. 26.55, 33.90, 37.85, 42.70,
51.75,57.85,57.85,61.85, 64.80, 65.90, 71.35, 78.75, and 83.8 respectively corresponding to (110), (101), (200),
(111),(210), (211), (220), (310), (002), (112), (301), (202) and (321). Data is in good agreement with the
tetragonal phase and perfectly matches with the standard ICDD data (card no. 72-1147). The lattice constants
a = 0.4736 nmand ¢ = 0.3184 nm. The crystallite size calculated using Scherrer formula from (110) hkl peak
was ~18.16 nm. From figure 1, it is observed that the crystallinity of tin oxide increases with annealing
temperature. It happened, generally, after the annealing smaller particles get agglomerate with each other and
make bigger one which increase crystallinity as well as peak intensity. This temperature has optimized after
several experiments (not shown here). Moreover, no phase transformation observed after the annealing.

3.2. FESEM

Figure 2 shows the FESEM image of the Cu doped SnO, NPs. As seen from figure 2, the SnO,:Cu NPs are
spherical shape with a size range less than 43 nm which obtained using Image J software. The physical
composition of Cu doped SnO, materials and its elemental distribution carried out through EDX elemental
mapping and it is shown in supplementary data file (figure S2).
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Figure 1. The XRD spectra of Cu doped SnO, NPs.

Figure 2. FESEM image of SnO,:Cu NPs.

3.3. Thermoluminescence properties

3.3.1. Glow curve and dose response

The glow peak corresponds to the trap levels which are related to the impurity/defects. A shallow primary glow
peakis observed at 93 °C. All others peaks ~170 °C and 270 °C can be associated to defects in the lattice and
hence these peaks are dosimetric peaks which are well stable to store radiation. Here, we use electron beam to
irradiate the cu doped SnO, NPs. Electron fluence was varied from 10 x 10''ecm *t020 x 10'*ecm ™ *(i.e.
1.55 kGy to 31 kGy). Figure 3(a) showed glow curves irradiated with different doses i.e. () 1.55 kGy, (ii)

3.87 kGy, (iii) 11.62 kGy, (iv) 15.50 kGy, (v) 23.25 kGy and (vi) 31 kGy respectively. The dose-response of glow
curve observed to be linearly increasing with increase in electron fluence upto 10 x 10'*e cm™* (i.e. 15.50 kGy)
and further gets saturated as can be seen from figure 3(a) and linearity of TL response of SnO,:Cu is shown in
figure 3(b). The linear dose-response was taken by calculating the area under the curve of TL glow curves
respectively.

3.3.2. Fading
In between sample irradiation and reading time, the TL counts can be influenced by natural atmospheric

conditions and daylight. For the confirmation of fading, we irradiated our sample at the dose of 75 x 10"

e cm”  (i.e. 11.625 kGy) and then checked the TL signals immediately. Remaining samples were stored in the
black paper under atmospheric conditions and their TL signals were recorded after a period of 6 h, 12 h, 1 day, 5
day, 10 day, 15 day, 20 day, 30 day, 45 day and 60 day respectively. Figure 4 shows 5.1% fading after the period of
60 days (i.e. two month) and it is well under the acceptable limit.
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Figure 3. (a) Glow curve, and (b) linear dose response for 6 MeV electron irradiated SnO,:Cu NPs.
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Figure 4. Thermoluminescence fading at the dose rate of 11.62 kGy for SnO,:Cu NPs irradiated by 6 MeV electron beam.

3.3.3. Reproducibility

Itis an important property to check the stability of dosimetric materials for the purpose of reuse. There are
numerous phosphor materials which can be used many times with a minor fraction of changes to a repeated set
of measurements like heating, irradiation, and counting the TL signals for constant dose exposure. Experimental
results are shown in figure 5, where 6 samples of SnO,: Cu NPs were exposed to a constant dose of 75 x 10"

e cm” *(11.625 kGy) by electron source and observed stable results under the standard acceptable deviation (i.e.
up to 5% range).

3.3.4. GCD (glow curve deconvolution)

The glow peaks of SnO,:Cu irradiated samples are quite complicated and to analyze it the best way is peak fitting.
Theoretical curves fitted with the experimental curve by using the glow curve deconvolution Spreadsheet
software [32] using the famous Kitis equation [33].

G Kitis [33] have used very simple derivations of those functions and it confirms that the 1st order, 2nd order
and general order of kinetics TL curve fitting. The good things in Kitis glow curve fitting functions is that most of
the parameters are derived from the experimental glow curves and which become more reliable than the test
values. The curve fitting was carried out using the first order, the second order and the general order equations as
given below:
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Figure 5. Reusability of SnO,: Cu NPs of dose 11.625 kGy.
For first order:
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where, I(T) = TLintensity at temperature T (K),

I, = maximum peak intensity,

T, = temperature corresponding to maximum peak intensity I,,,

E = trap depth or the thermal activation energy (eV) needed to free the trapped electrons,

B = order of kinetics, and

k = Boltzmann’s constant (8.6 x 107> eVK ™).

Moreover, the frequency factor (S) i.e. the lattice phonon vibrational frequency was also evaluated by the
following general order equation:

The general order:

S=— BE _ exp(ﬁ) (4)
kTm(l + - DT) n
where, 5 = linear heating rate (K/sec) and

b = Order of kinetics.

Figure of Merit (i.e. FOM) is another time one should take care while curve fitting, which is suggested by
Eddy[34]. The FOM is the error function or a simple ‘chi-square’. The ‘best fit’ is taken at which the error
function converges to a minimum [35].

oY — Y(X:
= YOOL 100 (5)

FOM =}
J

where J; = initial temperature in the fit region,

J¢ = final or ending temperature in the fit region,

Y; = PMT tubes current at temperature j,

Y(X;) = Value of the function at channel j and

A = areaunder the peak, i.e., integral of the fit function between J; and J¢.

Here, Cu doped SnO, NPs samples irradiated to 15.5 kGy of 6 MeV electrons and deconvoluted it by Kitis
equation. From figure 6, we found the four glow peaks, indicating four trapping levels. GCD fitting parameters
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Figure 6. A typical analyzed glow curve of SnO,:Cu measured after irradiation of 1000 counts (i.e. 15.5 kGy) by electron source.

Table 1. Data of SnO,:Cu doped NPs on different trap depth parameters.

Sample name Peak  Peaktemp.T,,(°C)  Orderofkinetics (b) ~ TrapdepthE(eV)  Frequencyfactor(s)”'  FOM (%)
SnO,:Cu(15.5kGy) P1 93 1.60 0.54 4.54 x 10 1.67
P2 170 1.36 0.79 1.97 x 10°
P3 263 1.70 1.1 4.91 x 10"°
P4 303 1.58 1.18 4.36 x 10"

such as the trap depth (eV), Order of kinetics (b) and FOM as evaluated are shown in the consolidated form in
table 1.

4, Conclusions

Cu doped SnO, phosphor has been successfully synthesized by hydrothermal technique. XRD results confirm
the tetragonal phase and crystallite size around ~38 nm. FESEM-EDS revealed the particle size (i.e. < 43 nm)
and elemental mapping confirms the Stoichiometric ratio. TL dosimetric properties of SnO,:Cu were studied
using electron beam of 6 MeV Race-Track Microtron Accelerator. TL peak intensity increases with increase in
electron beam dose from 1.55 kGy to 15.50 kGy after which it gets saturated. Moreover, the reproducibility
shows good stability and fading is within the acceptable limit. Other useful dosimetric parameters also extracted
from the glow curve deconvolution (GCD) method. These results reveal the possibility of using Cu doped SnO,
phosphor in electron beam TL dosimetry.
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