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Abstract
Cudoped SnO2 (SnO2:Cu)nano phosphor (NP)was successfully synthesized by one-step simple
hydrothermalmethod and it was characterized byXRD (x-rayDiffraction) for structural, FESEM
(Field Emission Scanning ElectronMicroscopy) formorphological and EDS (ElectronDispersive
Spectroscopy) for elemental analysis. NPwas annealed at 700 °C for 2 h and its crystallinity for
tetragonal phasewas confirmed throughXRD. The crystallite sizewas∼10.39 nm for un-annealed and
∼18.16 nm for annealed samples which has been calculated using Scherer equation. The particle size
was estimated to be∼43 nmand the elemental composition of Sn,O, Cuwas obtained by EDS. In
addition, to study the dosimetric properties, the SnO2:Cu phosphors were irradiatedwith 6MeV
electron beam atfluences ranging from10×1011 e cm−2 to 20×1012 e cm−2 which is equivalent to
the 1.55 kGy to 31 kGy. The irradiated sample showedThermoluminescence (TL) dosimetric glow
peaks at 170 °C, 263 °Cand 303 °C. SnO2:CuNPwas found to be sensitive enough for energetic
electrons. Further, it has been noticed that the TL dose response found sensitive upto 10×1012

e cm−2 (15.50 kGy)with fading of 5.1% for 2months.Hence, SnO2:Cu can be used for the
measurement of electron doses.

1. Introduction

Numerous applications have been provided bymetal-oxide semiconductor because of their suitable band gap
which varies between 2.6 to 4.2 eV [1, 2]. Among severalmetal-oxides, SnO2 has unique physiochemical
properties [3, 4]. It is a n-type semiconductormaterials provides great importance in broad range of
applications, viz. gas andUV sensing [5–7], anode of lithium-ion battery [8–10], waste water purification [11],
solar cell, and photo catalyst [12–14] etc.On the other hand, in the field of luminescence, efforts are beingmade
to develop phosphors to change their optical and electronic properties by reducing the dimension ofmaterials
particle [15, 16].

Different doping of SnO2 (nanosized phosphor) shows numerous applications like orange-red-emission for
white light LEDs [17], energy transfermechanism [18], thermoluminescence dosimetric (TLD) areas [19–21]
etc. Some of the cases pure SnO2 (without doping) also shows excellent characteristics of luminescent devices
[22]. To prepare SnO2 compounds, there are various routs adopted for differentmorphologies which can be
used for various applications [5, 8, 23–25]. Tomentioned few, Bajpayi et al [26] andBhadane et al [15]have
studied TLDproperties through γ-irradiation on SnO2:Eu nanoparticles. Zeferino et al [21] proposed a dose
enhancing properties usingβ-irradiation for the radiotherapy applications. Dosimetry (D) is tool tomeasured
the absorbed ionizing radiation andThermoluminescence (TL) is the system to emits the light during heating
the previously irradiatedmaterial i.e. insulator or semiconductor, with uniformheating temperature [27–29].
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Further, Jiao et al [30] has studied electron beam irradiation effect on SnO2 particles for the gas sensor
applicationwhich they synthesized by spray pyrolysis route. But, no study has been done so far in the dosimetric
field using high energy electron beam for SnO2 nanophosphors, even though it has suitable dosimetric
properties. Therefore, the aimof the current study is to prepare and investigate theCu doped SnO2NPs for the
electron dosimetry applications. The TL dosimetric properties of SnO2:Cu have been studied by 6MeV electrons
(Race TrackMicrotronAccelerator). This study reveals some important features about the dosimetric properties
of SnO2:Cu nanophosphors (NP’s).

2. Experimental procedure

2.1. Synthesis of SnO2:CuNPs
Copper doped TinOxideNPswere prepared by simple hydrothermalmethod [19]. All precursorwas purchased
as AR grade solution and used it for systemof SnO2:CuNPs. Atfirst the precursor, 20ml solution of tin chloride
(SnCl4.5H2O) and 60ml solution of ammoniumhydroxide (NaOH)was prepared in double distilledwater
(DDW) under continuous stirring condition.Magnetic stirringwas performed for 30 min for both the aqueous
solution. TheNaOH solutionwas taken into burette and added to the SnCl4.5H2O solution drop by drop until
the pHof the resulting solution reach to 7. Subsequently, we added a 1mol%CuCl2 precursor (as Cu dopant
which act as an activator) into the above resulting solutions under continues stirring and then added 50ml
ethanol (absolute, 99.99) in themixture of SnCl4 andNaOH respectively. The homogeneousmixture solution
was then transferred to Teflon lined stainless steel autoclave having the capacity of 100ml, and put into the oven
at 180 °C for 24 h. After the hydrothermal reactionwas complete, white precipitate (ppt)was collected. The ppt
wasfilter out, washwithDDWand ethanol to remove the unreacted compounds from thewet ppt. At the end,
thewet pptwas dried at 140 °C for 5 h under ambient condition. The obtained dried powderwas denoted as
SnO2:Cu. Thefinal powder (i.e. SnO2:Cu phosphor)was used for further characterizations andTL studies. Two
sets of samples prepared for characterization inwhich one set of samples was annealed at 700 °Cand another set
was kept un- annealed.

2.2. Characterization
The structural analysis was obtained using the x-rayDiffraction spectrometer (Bruker-AXSD8ADVANCE) and
morphological naturewith elemental analysis was studied by Field Emission Scanning ElectronMicroscope&
EnergyDispersive x-ray Spectrometer (FESEM: FEINovaNano SEM450&EDS:Bruker X-Flash 6I30) operated
at 15 kV. The dosimetric properties of 6MeV electron irradiated SnO2:Cu phosphorwas recorded using
Nucleonix TLD reader having a heating rate (β)=5 °C s−1. The schematic of electron radiation source (6MeV
race trackmicrotron) is shown in supplementary datafile (figure S1 is available online at stacks.iop.org/MRX/
6/055901/mmedia) [31]. The phosphorswere irradiated in the air by keeping themon a Faraday cup at a
distance of 12 cm from the extraction port of themicrotron and the fluencewas recorded in terms of counts,
where, 1 count is nearly equal to 1011 electron. The dose conversion of electron fluence (e−/cm2) toGray (Gy)
informationwas indicates in supplementary datafile (table S1).

3. Results and discussion

3.1. XRDanalysis
Figure 1 depicts theXRD spectra of the pristine and annealedCu-doped SnO2 nanoparticles. The typical XRD
pattern of the SnO2:CuNPs annealed at 700 °Cexhibit all standards hkl peaks i.e. 26.55, 33.90, 37.85, 42.70,
51.75, 57.85, 57.85, 61.85, 64.80, 65.90, 71.35, 78.75, and 83.8 respectively corresponding to (110), (101), (200),
(111), (210), (211), (220), (310), (002), (112), (301), (202) and (321). Data is in good agreement with the
tetragonal phase and perfectlymatches with the standard ICDDdata (card no. 72-1147). The lattice constants
a=0.4736 nmand c=0.3184 nm. The crystallite size calculated using Scherrer formula from (110) hkl peak
was∼18.16 nm. Fromfigure 1, it is observed that the crystallinity of tin oxide increases with annealing
temperature. It happened, generally, after the annealing smaller particles get agglomerate with each other and
make bigger onewhich increase crystallinity as well as peak intensity. This temperature has optimized after
several experiments (not shownhere).Moreover, no phase transformation observed after the annealing.

3.2. FESEM
Figure 2 shows the FESEM image of theCudoped SnO2NPs. As seen from figure 2, the SnO2:CuNPs are
spherical shapewith a size range less than 43 nmwhich obtained using Image J software. The physical
composition of Cu doped SnO2materials and its elemental distribution carried out through EDX elemental
mapping and it is shown in supplementary datafile (figure S2).
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3.3. Thermoluminescence properties
3.3.1. Glow curve and dose response
The glowpeak corresponds to the trap levels which are related to the impurity/defects. A shallow primary glow
peak is observed at 93 °C.All others peaks∼170 °C and 270 °Ccan be associated to defects in the lattice and
hence these peaks are dosimetric peakswhich are well stable to store radiation.Here, we use electron beam to
irradiate the cu doped SnO2NPs. Electronfluencewas varied from10×1011 e cm−2 to 20×1012 e cm−2 (i.e.
1.55 kGy to 31 kGy). Figure 3(a) showed glow curves irradiatedwith different doses i.e. (i) 1.55 kGy, (ii)
3.87 kGy, (iii) 11.62 kGy, (iv) 15.50 kGy, (v) 23.25 kGy and (vi) 31 kGy respectively. The dose-response of glow
curve observed to be linearly increasing with increase in electron fluence upto 10×1012 e cm−2 (i.e. 15.50 kGy)
and further gets saturated as can be seen from figure 3(a) and linearity of TL response of SnO2:Cu is shown in
figure 3(b). The linear dose-response was taken by calculating the area under the curve of TL glow curves
respectively.

3.3.2. Fading
In between sample irradiation and reading time, the TL counts can be influenced by natural atmospheric
conditions and daylight. For the confirmation of fading, we irradiated our sample at the dose of 75×1011

e cm−2 (i.e. 11.625 kGy) and then checked the TL signals immediately. Remaining samples were stored in the
black paper under atmospheric conditions and their TL signals were recorded after a period of 6 h, 12 h, 1 day, 5
day, 10 day, 15 day, 20 day, 30 day, 45 day and 60 day respectively. Figure 4 shows 5.1% fading after the period of
60 days (i.e. twomonth) and it is well under the acceptable limit.

Figure 1.TheXRD spectra of Cu doped SnO2NPs.

Figure 2. FESEM image of SnO2:CuNPs.
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3.3.3. Reproducibility
It is an important property to check the stability of dosimetricmaterials for the purpose of reuse. There are
numerous phosphormaterials which can be usedmany timeswith aminor fraction of changes to a repeated set
ofmeasurements like heating, irradiation, and counting the TL signals for constant dose exposure. Experimental
results are shown infigure 5, where 6 samples of SnO2: CuNPswere exposed to a constant dose of 75×1011

e cm−2 (11.625 kGy) by electron source and observed stable results under the standard acceptable deviation (i.e.
up to 5% range).

3.3.4. GCD (glow curve deconvolution)
The glowpeaks of SnO2:Cu irradiated samples are quite complicated and to analyze it the best way is peakfitting.
Theoretical curves fittedwith the experimental curve by using the glow curve deconvolution Spreadsheet
software [32]using the famousKitis equation [33].

GKitis [33]have used very simple derivations of those functions and it confirms that the 1st order, 2nd order
and general order of kinetics TL curve fitting. The good things inKitis glow curve fitting functions is thatmost of
the parameters are derived from the experimental glow curves andwhich becomemore reliable than the test
values. The curve fittingwas carried out using the first order, the second order and the general order equations as
given below:

Figure 3. (a)Glow curve, and (b) linear dose response for 6MeV electron irradiated SnO2:CuNPs.

Figure 4.Thermoluminescence fading at the dose rate of 11.62 kGy for SnO2:CuNPs irradiated by 6MeV electron beam.
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where, I(T)=TL intensity at temperature T (K),
Im=maximumpeak intensity,
Tm=temperature corresponding tomaximumpeak intensity Im,
E=trap depth or the thermal activation energy (eV)needed to free the trapped electrons,
B=order of kinetics, and
k=Boltzmann’s constant (8.6×10−5 eVK−1).
Moreover, the frequency factor (S) i.e. the lattice phonon vibrational frequencywas also evaluated by the

following general order equation:
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where,β=linear heating rate (K/sec) and
b=Order of kinetics.
Figure ofMerit (i.e. FOM) is another time one should take care while curve fitting, which is suggested by

Eddy [34]. The FOM is the error function or a simple ‘chi-square’. The ‘bestfit’ is taken at which the error
function converges to aminimum [35].
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where Ji=initial temperature in the fit region,
Jf= final or ending temperature in thefit region,
Yj=PMT tubes current at temperature j,
Y(Xj)=Value of the function at channel j and
A=area under the peak, i.e., integral of the fit function between Ji and Jf.
Here, Cu doped SnO2NPs samples irradiated to 15.5 kGy of 6MeV electrons and deconvoluted it byKitis

equation. Fromfigure 6, we found the four glowpeaks, indicating four trapping levels. GCDfitting parameters

Figure 5.Reusability of SnO2: CuNPs of dose 11.625 kGy.
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such as the trap depth (eV), Order of kinetics (b) and FOMas evaluated are shown in the consolidated form in
table 1.

4. Conclusions

Cudoped SnO2 phosphor has been successfully synthesized by hydrothermal technique. XRD results confirm
the tetragonal phase and crystallite size around∼38 nm. FESEM–EDS revealed the particle size (i.e.<43 nm)
and elementalmapping confirms the Stoichiometric ratio. TL dosimetric properties of SnO2:Cuwere studied
using electron beamof 6MeVRace-TrackMicrotronAccelerator. TL peak intensity increases with increase in
electron beamdose from1.55 kGy to 15.50 kGy after which it gets saturated.Moreover, the reproducibility
shows good stability and fading is within the acceptable limit. Other useful dosimetric parameters also extracted
from the glow curve deconvolution (GCD)method. These results reveal the possibility of usingCu doped SnO2

phosphor in electron beamTLdosimetry.
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